23 research outputs found

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber

    Get PDF
    Large Eddy Simulations (LES) of a lean swirl-stabilized gas turbine burner are used to analyze mechanisms triggering combustion instabilities. To separately study the effect of velocity and equivalence ratio fluctuations, two LES of the same geometry are performed: one where the burner operates in a “technically” premixed mode (methane is injected by holes in the vanes located in the diagonal passage upstream of the chamber) and the second one where the flow is fully premixed in the diagonal passage. The inlet is acoustically modulated and the mechanisms affecting the dynamic flame response are identified. LES reveals that both cases provide similar averaged (non-)pulsated flame shapes. However, even though the mean flames are only slightly modified, the delays change when mixing is not perfect. LES fields and a simple model for the methane jets trajectories show that mixing in the diagonal passage is not sufficient to damp heterogeneities induced by unsteady fuel flow rate and varying fuel jet trajectories. These mixing fluctuations are phased with velocity oscillations and modify the flame response to forcing. Local fields of delays and interaction indices are obtained, showing that the flame is not compact and is affected by fluctuations of mixing

    LES of bifurcation and hysteresis in confined annular swirling flows

    Get PDF
    This paper presents a LES based study of two swirling confined jet configurations corresponding to an aeronautical injection system. The objectives are to demonstrate that LES codes become sensitive to numerical parameters (grid, SGS model) in such cases and that this is due to the fact that these flows are close to bifurcating conditions because of the presence of swirl and confinement walls. To demonstrate this, in the first configuration ("full swirler"), the swirler/plenum ensemble is computed while only the swirler without plenum is computed in the second ("adjustable swirler"): this simplification allows to vary swirl continuously and explore bifurcation diagrams where the control parameter is the mean swirl number. These numerical results are compared to a similar study performed experimentally by Vanierschot and Van den Bulck (2007) [1]. They confirm that certain confined swirling flows are intrinsically submitted to bifurcations. In the context of LES this leads to a large sensitivity of the simulation results to numerical parameters, a property which is not observed in most other non swirling or non confined situations

    Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

    Get PDF
    The objectives of this paper are the description of azimuthal instability modes found in annular combus- tion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solv- ers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-excited oscillation at the frequency of the first azimuthal eigenmode. The mesh independence of the LES is verified before ana- lysing the nature of this mode using various indicators over more than 100 cycles: the mode is mostly a pure standing mode but it transitions from time to time to a turning mode because of turbulent fluctu- ations, confirming experimental observations and theoretical results. The correlation between pressure and heat release fluctuations (Rayleigh criterion) is not verified locally but it is satisfied when pressure and heat release are averaged over sectors. LES is also used to check modes predicted by an acoustic Helmholtz solver where the flow is frozen and flames are modelled using a Flame Transfer Function (FTF) as done in most present tools. The results in terms of mode structure compare well confirming that the mode appearing in the LES is the first azimuthal mode of the chamber. Moreover, the acoustic solver provides stability maps suggesting that a reduction of the time delay of the FTF would be enough to sta- bilise the mode. This is confirmed with LES by increasing the flame speed and verifying that this modi- fication leads to a damped mode in a few cycles

    LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame

    Get PDF
    Combustion dynamics of a V-flame in an afterburner-type configuration are investigated using high-order compressible large eddy simulations (LES) and compared to experimental results. Both self-excited longitudinal (100 Hz) and transverse (1400 Hz) modes observed in the experiments are captured by LES and instability mechanisms are discussed. LES results for all modes are compared to a Helmholtz solver output, showing that the transverse mode appearing in the LES is the 1Lx-2Ty-0Tz eigenmode of the chamber, affecting the velocity field symmetrically. The 1Lx fluctuation causes a symmetric flame roll-up which increases heat release rate fluctuations, closing the feedback loop. The 2Ty component of the mode is active along the flame holder axis and causes not only transverse fluctuations but also a reorganization of the mean flame along two main zones located on both sides of the zero acoustic velocity plane, a feature that has not been reported before. Dynamic mode decomposition (DMD) is used to extract the structure of the transverse mode from LES snapshots which is found to match the Helmholtz solver prediction. This study confirms the capacity of high-order LES to capture not only low-frequency oscillations but also high-order frequency transverse modes in combustion chambers

    Large Eddy Simulation of flows in industrial compressors: a path from 2015 to 2035

    Get PDF
    A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Due to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds Averaged Navier-Stokes (RANS) approach. However there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, Large Eddy Simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall-modelling and the adaptation of the phase lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today

    Comparison of les and rans predictions with experimental results of the fan of a turbofan

    Get PDF
    This paper aims at validating LES capability if applied to an actual turbofan configuration at nominal regime, if compared to RANS and experimental measurements. For assessment, averaged radial profiles are compared in 3 axial planes – before the stage, between the rotor blade and stator vanes, and downstream of the stator. RANS and LES results are in very good agreement, but found to be shifted compared to the measurements and for some quantities. An analysis of the unsteady axial velocity is then proposed, investigating root-mean square of axial velocity. Tip-leakage, as well as two boundary layer transitions are evidenced in the rotor. An estimation of the integral turbulent timescale is finally proposed in the whole domain, using autocorrelation of the axial velocity. Suction- side horseshoe vortices are found to be very coherent, as well as the stator corner vortices. Regions of large timescale are moreover evidenced between rotor and stator wakes

    Development of an algebraic-closure-based moment method for unsteady Eulerian simulations of particle-laden turbulent flows in very dilute regime

    Get PDF
    An algebraic-closure-based moment method (ACBMM) is developed for unsteady Eulerian particle simulations, coupled with direct numerical simulations (DNSs) of fluid turbulent flows, in very dilute regime and up to large Stokes numbers StK (based on the Kolmogorov timescale) or moderate Stokes numbers St (based on the turbulent macroscale seen by the particles). The proposed method is developed in the frame of a conditional statistical approach which provides a local and instantaneous characterization of the dispersed-phase dynamic accounting for the effect of crossing between particle trajectories which becomes substantial for StK > 1. The computed Eulerian quantities are low-order moments of the conditional probability density function (PDF) and the corresponding governing equations are derived from the PDF kinetic equation in the general frame of the kinetic theory of gases. At the first order, the computation of the mesoscopic particle number density and velocity requires the modeling of the second-order moment tensor appearing in the particle momentum equation and referred to as random uncorrelated motion (RUM) particle kinetic stress tensor. The current work proposes a variety of different algebraic closures for the deviatoric part of the tensor. An evaluation of some effective propositions is given by performing an a priori analysis using particle Eulerian fields which are extracted from particle Lagrangian simulations coupled with DNS of a temporal particle-laden turbulent planar jet. Several million-particle simulations are analyzed in order to assess the models for various Stokes numbers. It is apparent that the most fruitful are explicit algebraic stress models (2UEASM) which are based on an equilibrium assumption of RUM anisotropy for which explicit solutions are provided by means of a polynomial representation for tensor functions. These models compare very well with Eulerian–Lagrangian DNSs and properly represent all crucial trends extracted from such simulations

    LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber

    Get PDF
    LES is used to study self-excited transverse modes in an atmospheric, square combustor (p = 1 bar). Simulations over a range of different mass flow rates show that transverse modes are present for all cases and exhibit varying RMS pressure amplitudes up to 0.4 bar. Analysis of LES results shows that transverse modes are due to a lock-in mechanism between an hydrodynamic unstable mode typical of swirling flows (the PVC mode or Processing Vortex Core) and the cavity modes. A control method using damping compliant walls (named DCWs) is applied to control the acoustic mode in the LES and to characterize the PVC in the absence of acoustic forcing. This method shows that the highest pressure oscillations appear when the PVC frequency is close to the frequency of the first transverse acoustic mode. A 3D Helmholtz solver is then used to predict the stability limits obtained by 3D LES. To capture transverse modes, a new flame transfer function (FTF) formulation is derived where local heat release perturbations are controlled by the orthoradial acoustic velocity fluctuations. The FTF is measured in the LES and when it is included in the Helmholtz solver, it allows to recover the stability zones observed in the LES

    Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames

    Get PDF
    Computational prediction of thermoacoustic instabilities arising in gas turbine and aero-engine combustors still remains a challenge especially if fuel is injected in a liquid spray form. This study shows that, in LES of such a combustor, the treatment of the liquid fuel film created on the walls of the injection system affects the mean flame weakly, but modifies the flame dynamics strongly. The configuration used for this work is the experimental setup SICCA-spray available at EM2C laboratory in Paris. First steady spray flame measurements are used to validate the LES Euler-Lagrange approach. Two modelling strategies for the interaction between the liquid fuel and the injector walls are tested with a negligible impact on the flame shape and structure. In the second part the same comparison is applied to another operating condition where a self-sustained thermo-acoustic limit-cycle is experimentally observed. In that case resonant coupling is achieved with LES, confirming the adequacy of the approach but only when the film layer is taken into account. Indeed, contrarily to the stable configuration, the difference between the two Lagrangian boundary conditions is shown to have a major impact on the feedback mechanism leading to the thermoacoustic oscillation
    corecore